Gluon structure of spin-1 meson as it becomes unstable using variationally optimized operators

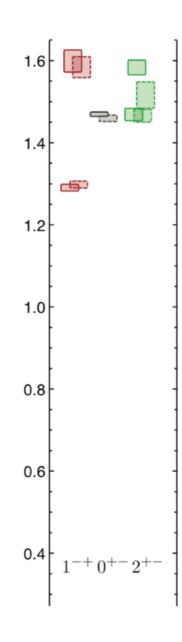
Collaborators

- Phiala Shanahan (MIT Center for Theoretical Physics)
- Raul Briceño (Old Dominion University/Jefferson Lab)
- Robert Edwards (Jefferson Lab)

Hadron structure in QCD

- How to correctly describe a QCD state?
 e.g |n> = c₀qq̄ + c₁qq̄qq̄ + c₂qq̄g + ...
- Which one to choose? It there a hierarchy?
- Quantifying internal structure might help
- GPDs (Generalized Parton Distributions)
- Encode 3D distribution of partons in hadrons

Gluonic structure

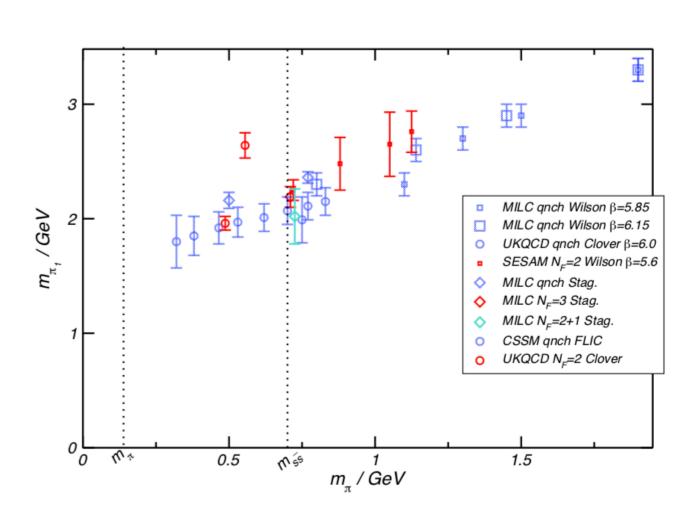

- Gluons are essential in hadron and nuclear structure
- Gluon GPDs harder to measure experimentally than quark
- Better understanding of gluons goal of current and future experiments (GlueX, EIC)

Gluon GPDs in Lattice QCD

- Moments of GPDs (GFFs) directly related to matrix elements calculable on the lattice for <u>bound states</u>
- Analogous quark functions (e.g form factors) have been studied extensively in Lattice QCD
- Gluon GFFs less understood. In recent years they have been investigated for pion, phi, nucleon and nuclei
- Goal: understand the gluonic structure of unstable states (resonances)

Exotic mesons

- Spin addition and symmetry transformation of fermion wavefunctions
- Not all J^{PC} combinations can be built from qq
- However multiple experimental candidates (e.g π1(1600) at COMPASS)
- Possible explanations: Tetraquark states, meson molecules, glueballs, hybrids


Hybrids qqg

- Flux tube model (Isgur & Paton PRD 31 (1965), 2910)
- → supported by Lattice (Bali et al PRD 62 (2000) 054503):

- Gluonic flux tube between quark and antiquark
- Excitations of tube results in hybrid states, some exotic
- Model predicts allowed J^{PC} and decay modes

Hybrids qqg

$\overline{\zeta}$	L	S	J^{PC}
+	1	0	1++
+	1	1	$(\underline{2}, 1, \underline{0})^{+-}$
+	2	0	$2^{}$
+	2	1	$(\underline{3}, 2, \underline{1})^{-+}$
-	1	0	1
-	1	1	$(2, \underline{1}, 0)^{-+}$
-	2	0	2^{++}
-	2	1	$(3, \underline{2}, 1)^{+-}$

From GlueX Collaboration (presentation to PAC30)

Meyer & Swanson arXiv:1502.07276

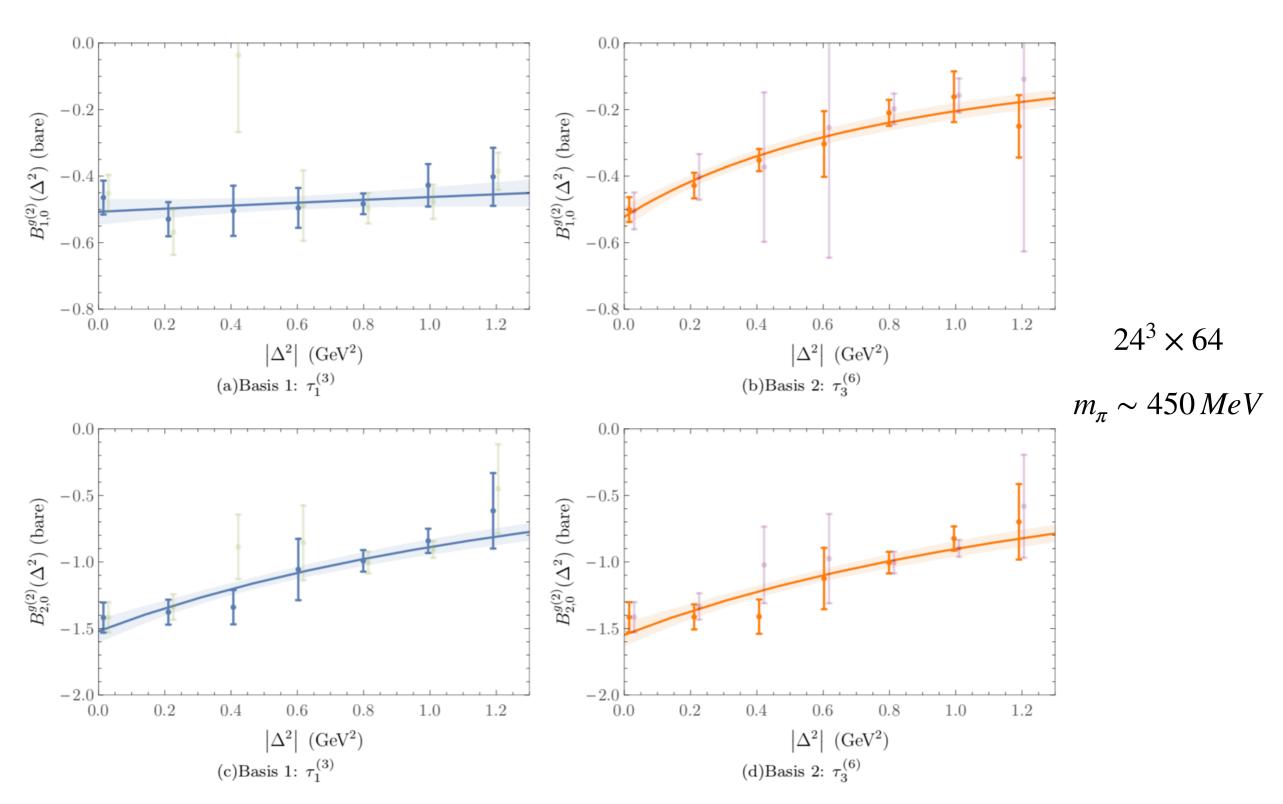
GlueX search for light hybrids

First case study: p meson

Mellin moments of GPDs related to gluonic operator matrix elements

$$\begin{split} \bar{O}_{\mu_1\dots\mu_n} &= S[G_{\mu_1\alpha}i\overleftrightarrow{D}_{\mu_3}\dots i\overleftrightarrow{D}_{\mu_n}G^\alpha_{\mu_2}] & \text{Spin-independent} \\ \tilde{O}_{\mu_1\dots\mu_n} &= S[\tilde{G}_{\mu_1\alpha}i\overleftrightarrow{D}_{\mu_3}\dots i\overleftrightarrow{D}_{\mu_n}\tilde{G}^\alpha_{\mu_2}] & \text{Helicity} \\ O_{\nu_1\nu_2\mu_1\dots\mu_n} &= S[G_{\nu_1\mu_1}i\overleftrightarrow{D}_{\mu_3}\dots i\overleftrightarrow{D}_{\mu_n}G_{\nu_2\mu_2}] & \text{Transversity} \end{split}$$

- Subduce into appropriate irreps of hypercubic rotation/reflection symmetry
- Lowest twist (n=2) decomposition into Lorentz structure for spin-1 meson gives 7 spin-independent, 7 helicity + 8 transversity GFFs
- Each structure function defines a gluonic radius (slope at zero momentum transfer)

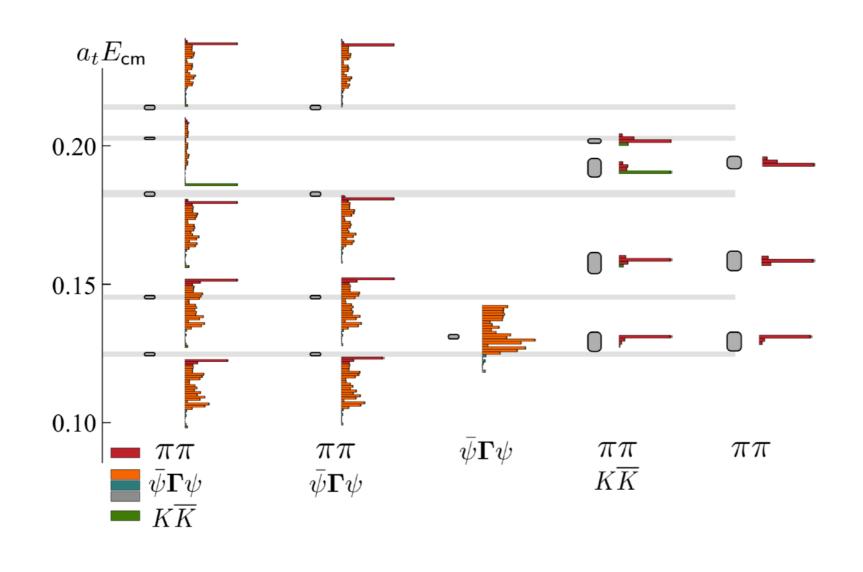

Forward limit spin independent GFFs

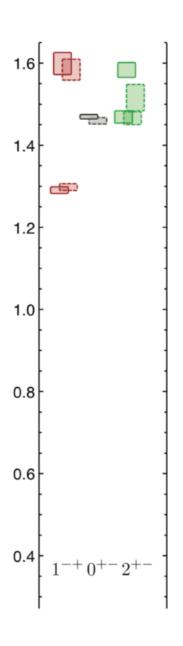
$$\bar{O}_{\mu_1\mu_2} = G_{\mu_1\alpha}G^{\alpha}_{\mu_2} - \frac{1}{4}g_{\mu_1\mu_2}G^{\alpha}_{\alpha} \longrightarrow \begin{array}{c} \text{Traceless part of gluon energy} \\ \text{momentum tensor} \end{array}$$
 Directly related to
$$\langle pE'|S[\bar{O}_{\mu_1\mu_2}]|pE \rangle = S[M^2E^{**}_{\mu_1}E_{\mu_2}]B_{2,1} + S[(E \cdot E^{**}p_{\mu_1}p_{\mu_2})]B_{2,2} \longrightarrow \begin{array}{c} \text{gluon momentum} \\ \text{fraction in forward} \\ \text{limit} \end{array}$$

On lattice proportional to 3-pt/2-pt function ratio:

- Λ denotes the hypercubic irrep that the operator has been reduced to. Two convenient choices: $\tau_1^{(3)}$ $\tau_3^{(6)}$ (Goeckeler et al PRD 54 (1996))
- Can mix with quark operator of same dimension. However mixing has been shown to be 10% (Alexandrou et al PRD 96 (2017) 054503)

Stable heavy p spin-indep GFFs

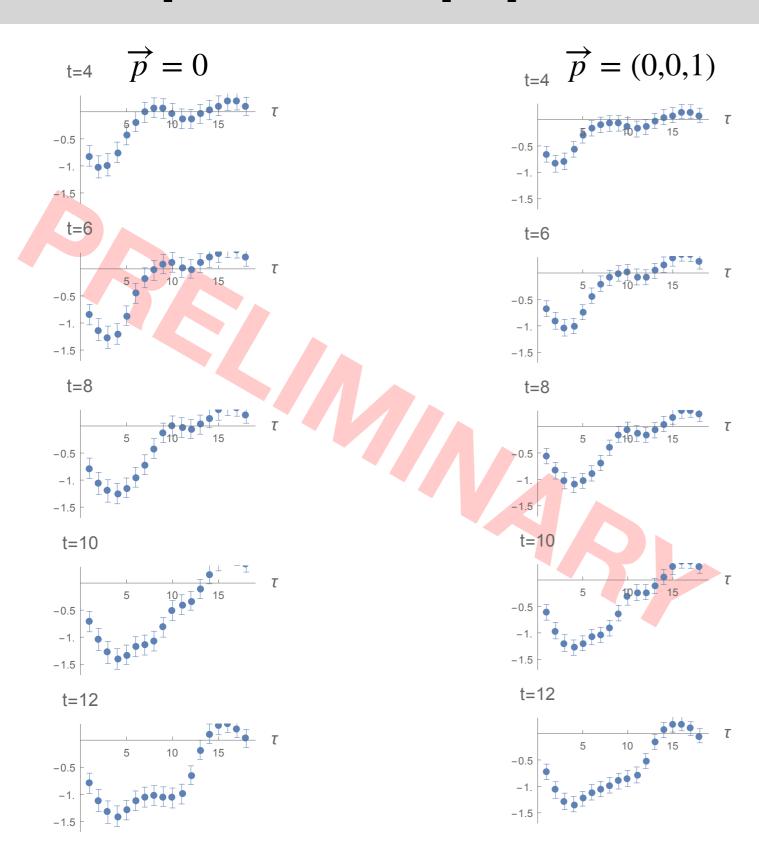



Detmold, Pefkou, Shanahan PRD 95 (2017) 114515

Variationally optimized interpolators

- Use large basis of definite spin operators of form $\bar{\psi}\Gamma \overleftrightarrow{D} \dots \overleftrightarrow{D}\psi$
- Reduce into cubic irreps if at rest or little group if in flight
- Optimized interpolators look like $\Omega_n^{\dagger} = \Sigma_i w_i^n O_i^{\dagger}$ where the weights are proportional to the eigenstates of the generalized eigenvalue problem $C(t)v^n = \lambda_n(t)C(t_0)v^n$
- Allows to probe in theory any state → spectra + structure functions of bound states
- Lüscher: infinite volume spectra of resonances

Results from Hadron Spectrum Collaboration



Wilson, Briceno, Dudek, Edwards, Thomas PRD 92, 094502 (2015)

Dudek et al PRD 82, 034508 (2010)

spin-indep p matrix element

With variationally optimized operators

$$m_{\pi} \sim 700 \, MeV$$

$$24^3 \times 128$$

$$\frac{a_s}{a_t} \sim 3.5$$

$$\tau_1^{(3)}$$

GFFs of unstable p

- Asymptotic state → Corresponds to complex valued pole
- No such thing in finite volume
- Several studies have looked into solving that problem
- In particular we will use the Briceno-Hansen formalism (nonperturbatively maps lattice matrix elements to infinite volume amplitudes)
- Necessary elements: π elastic FFs, ππ matrix elements
- For more details see Alessandro Baroni's talk

Short term goals

- Calculate the infinite volume matrix element of p resonance using BH formalism
- Extract gluonic GFFs and renormalize results
- Parallel efforts on renormalization of gluonic operators by Yang et al (arxiv:1805.00531).
- Compare with stable ρ GFFs to interpret e.g gluon momentum fraction similarities and differences
- What happens to the gluon radius?

Long term goals

- Expand formalism to exotic states (hybrids)
- Predict 3D picture of gluonic structure of states with explicit gluonic degrees of freedom. How does it compare with conventional states?
- Combine with experimental efforts to get better understanding of QCD and nature

THANK YOU